Sucrose Synthase in Developing Maize Leaves: Regulation of Activity by Protein Level during the Import to Export Transition.

نویسندگان

  • B Nguyen-Quoc
  • M Krivitzky
  • S C Huber
  • A Lecharny
چکیده

The maize (Zea mays) leaf is a valuable system to study the sucrose import to sucrose export transition at the cellular level. Rapidly growing and fully heterotrophic cells in the basal part of the young leaf showed a high sucrose synthase (SS) activity. Leaf SS has been purified to homogeneity. By comparison with purified kernel SS isozymes, the leaf SS has been identified as SS(2). SS(1) protein and SS(2) protein were clearly separated by electrophoresis and the two monomers differed in size by 6 kilodaltons. Nevertheless, kinetic parameters of both enzymes were very similar. Immunodetection of SS protein showed that in young heterotrophic tissues SS(2) was a major protein accounting for 3% of the total protein. Concurrent with greening, SS activity decreased and the change of activity was explained by regulation of the protein level. In mature green tissues, which are synthetizing sucrose as evidenced by the presence of sucrose phosphate synthase activity, SS activity was almost completely absent. Results suggested that down regulation of SS(2) enzyme protein level was an early event in the transition from import to export status of the leaf.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Companion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading.

An immunohistochemical approach was used in maize (Zea mays) and citrus (Citrus paradisi) to address the previously noted association between sucrose synthase and vascular bundles and to determine the localization of the low but detectable levels of sucrose synthase that remain in leaves after the import-export transition. Sucrose synthase protein was immunolocalized at the light microscope lev...

متن کامل

Role and Regulation of Sucrose-phosphate Synthase in Higher Plants.

Sucrose-phosphate synthase (SPS; E.C. 2.4.1.14) is the plant enzyme thought to play a major role in sucrose biosynthesis. In photosynthetic and nonphotosynthetic tissues, SPS is regulated by metabolites and by reversible protein phosphorylation. In leaves, phosphorylation modulates SPS activity in response to light/dark signals and end-product accumulation. SPS is phosphorylated on multiple ser...

متن کامل

Source and sink leaf metabolism in relation to Phloem translocation: carbon partitioning and enzymology.

The import-export transition in sugar beet leaves (Beta vulgaris) occurred at 40 to 50% leaf expansion and was characterized by loss in assimilate import and increase in photosynthesis. The metabolism and partitioning of assimilated and translocated C were determined during leaf development and related to the translocation status of the leaf. The import stage was characterized by C derived from...

متن کامل

Sucrose Phosphate Synthase Expression at the Cell and Tissue Level Is Coordinated with Sucrose Sink-to-Source Transitions in Maize Leaf.

Immunohistological analyses for sucrose phosphate synthase (SPS) show that the protein is localized in both bundle-sheath cells (BS) and mesophyll cells (M) in maize (Zea mays) leaves. In young leaves, SPS protein was predominantly in the BS, whereas mature leaves showed nearly equal levels of signal in both BS and M. A cell-type-specific response was also seen in light and dark treatments. Dar...

متن کامل

Comparative studies of the light modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves.

We recently obtained evidence that the activity of spinach (Spinacia oleracea L.) leaf nitrate reductase (NR) responds rapidly and reversibly to light/dark transitions by a mechanism that is strongly correlated with protein phosphorylation. Phosphorylation of the NR protein appears to increase sensitivity to Mg(2+) inhibition, without affecting activity in the absence of Mg(2+). In the present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 1990